Search results for " Joining"

showing 10 items of 17 documents

Effect of active heating and cooling on microstructure and mechanical properties of friction stir–welded dissimilar aluminium alloy and titanium butt…

2019

A butt joint configuration of AA6061–pure Ti was welded using friction stir welding (FSW) with an assisted cooling and heating conditions, aiming to attain a flawless joint. Cooling-assisted friction stir welding (CFSW) was carried out with a different cooling medium such as CO2, compressed air and water at controlled flow rate. However, heating-assisted friction stir welding (HFSW) was performed with heating source of GTAW torch just before FSW tool at different current density. Prepared specimens were subjected to optical microscopy (OM), scanning electron microscopy (SEM) and electrodischarge spectroscopy (EDS) for microstructural characterizations. The tensile strength and microhardness…

0209 industrial biotechnologyMaterials scienceDissimilar metal joiningMechanical properties02 engineering and technologyWeldingIndentation hardness020501 mining & metallurgylaw.inventionHeating020901 industrial engineering & automationlawUltimate tensile strengthAluminium alloyFriction stir weldingmechanical propertieboron carbidefriction stir processingComposite materialmetal matrix compositeInterfacial microstructureHybrid friction stir weldingMechanical EngineeringGas tungsten arc weldingMetals and AlloysMicrostructure0205 materials engineeringMechanics of Materialsvisual_artaluminumvisual_art.visual_art_mediumButt jointMaterials processingCooling
researchProduct

Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells.

2011

Abstract Artesunate, the active agent from Artemisia annua L. used in the traditional Chinese medicine, is being applied as a first-line drug for malaria treatment, and trials are ongoing that include this drug in cancer therapy. Despite increasing interest in its therapeutic application, the mode of cell killing provoked by artesunate in human cells is unknown. Here, we show that artesunate is a powerful inducer of oxidative DNA damage, giving rise to formamidopyrimidine DNA glycosylase–sensitive sites and the formation of 8-oxoguanine and 1,N6-ethenoadenine. Oxidative DNA damage was induced in LN-229 human glioblastoma cells dose dependently and was paralleled by cell death executed by ap…

Cancer ResearchProgrammed cell deathDNA RepairRAD51Drug Evaluation PreclinicalArtesunateApoptosisCell Cycle ProteinsAtaxia Telangiectasia Mutated ProteinsBiologyProtein Serine-Threonine KinasesModels Biologicalchemistry.chemical_compoundNeoplasmsTumor Cells CulturedHumansDNA Breaks Double-StrandedTumor Suppressor ProteinsMolecular biologyAntineoplastic Agents PhytogenicArtemisininsUp-RegulationNon-homologous end joiningDNA-Binding ProteinsOxidative StressCell killingOncologychemistryArtesunateApoptosisCancer cellHomologous recombinationDNA DamageMolecular cancer therapeutics
researchProduct

Rad51 and BRCA2 - New Molecular Targets for Sensitizing Glioma Cells to Alkylating Anticancer Drugs

2011

First line chemotherapeutics for brain tumors (malignant gliomas) are alkylating agents such as temozolomide and nimustine. Despite growing knowledge of how these agents work, patients suffering from this malignancy still face a dismal prognosis. Alkylating agents target DNA, forming the killing lesion O(6)-alkylguanine, which is converted into DNA double-strand breaks (DSBs) that trigger apoptosis. Here we assessed whether inhibiting repair of DSBs by homologous recombination (HR) or non-homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioma cells to alkylating agents. For down-regulation of HR in glioma cells, we used an interference RNA (iRNA) approach targeting Ra…

Cancer Treatmentlcsh:MedicineApoptosisToxicologyBiochemistrychemistry.chemical_compoundDrug DiscoveryRNA Small Interferinglcsh:ScienceHomologous RecombinationNeurological TumorsGene knockdownMultidisciplinaryBrain NeoplasmsGliomaFlow CytometryNon-homologous end joiningOncologyPARP inhibitorMedicinemedicine.drugResearch ArticleBiotechnologyDrugs and DevicesDrug Research and DevelopmentDNA damageMorpholinesToxic AgentsOlaparibGliomaCell Line TumormedicineHumansBiologyAntineoplastic Agents AlkylatingProtein Kinase InhibitorsBRCA2 ProteinTemozolomideBase SequenceNimustinelcsh:RCancers and NeoplasmsChemotherapy and Drug Treatmentmedicine.diseasechemistryMicroscopy FluorescenceChromonesCancer researchlcsh:QRad51 RecombinaseDNA DamagePLoS ONE
researchProduct

Joining by forming technologies: current solutions and future trends

2022

AbstractThe progressively more demanding needs of emissions and costs reduction in the transportation industry are pushing engineers towards the use of increasingly lightweight structures. This goal can be achieved only if dissimilar and/or new materials, including polymers and composites, are joined together to create complex structures. Conventional fusion welding processes have often been proven inadequate to this task because of the high heat input reducing the joint mechanical properties or even making the joining process impossible. Joining by forming technologies take advantage on the plastic deformation to create sound joints out of even very dissimilar materials. Over the last 25 y…

Clinching Joining Light alloys Riveting Solid state WeldingGeneral Materials ScienceSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneInternational Journal of Material Forming
researchProduct

Different genomic organization and expression of immunoglobulin light-chain isotypes in the rainbow trout.

2000

cDNA studies have distinguished two isotypes of the rainbow trout (Oncorhynchus mykiss) immunoglobulin (Ig) light chain (designated L1 and L2). This study characterized genomic clones of these isotypes. L1 genes are arranged in clusters with single copies of variable (V), joining (J), and constant (C) segments. The transcriptional orientation of the V genes is opposite to that of the J and C segments, indicating that the V genes must be rearranged by inversion. L2 is also organized in clusters, consisting of two or three V, one J, and one C exon, all in the same transcriptional orientation. L1 and L2 of rainbow trout are similar to the previously identified cod and catfish clusters. Repeat …

DNA ComplementaryTATA boxImmunologyMolecular Sequence DataImmunoglobulin Variable RegionGene ExpressionBiologyImmunoglobulin light chainComplementary DNASequence Homology Nucleic AcidGeneticsAnimalsAmino Acid SequenceRNA MessengerEnhancerPromoter Regions GeneticGeneGenomic organizationGeneticsBase SequenceSequence Homology Amino AcidMolecular biologyImmunoglobulin IsotypesRegulatory sequenceOncorhynchus mykissImmunoglobulin Joining RegionImmunoglobulin Light ChainsSequence motifImmunoglobulin Constant RegionsImmunogenetics
researchProduct

Dissimilar joining of copper to stainless steel and TA6V to stainless steel by high power beams : understanding and modeling of physicochemical pheno…

2010

The present study is dedicated to the comprehension of the mechanism of materials mixing during dissimilar welding by high power beam sources. We have been interested in joining of two couples of metallic materials which present different metallurgical problems: •copper- stainless steel (miscibility gap, important difference in physical properties);•TA6V- stainless steel (oxidation on air, formation of intermetallic phases which made the joint brittle).For the first couple of materials, continuous laser Nd:YAG welding and electron beam welding have been applied. The experimental study of morphology evolution, composition, microstructure and mechanical properties has allowed establishing the…

Electron beamLaser Nd:YAGIntermetallicsFaisceau d'électronsIntermétalliques[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Assemblage hétérogèneÉcoulement multiphasique[CHIM.OTHE] Chemical Sciences/Other[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other][PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other][ CHIM.OTHE ] Chemical Sciences/OtherNumerical modelingNd:YAG laserDissimilar joiningMultiphase flowModélisation numérique[CHIM.OTHE]Chemical Sciences/OtherMicrostructure
researchProduct

Microsatellite-based species identification method for Drosophila virilis group species

2007

Species of the D. virilis group are widely used in evolutionary research, but the individuals of different species are difficult to distinguish from each other morphologically. We constructed a fast and easy microsatellite-based identification method for the species of the group occurring sympatrically in northern Europe. The neighbor joining tree based on 14 microsatellite loci also gave a good resolution of the species divergence pattern in the whole group.

GeneticsSpecies complexGeneral MedicineBiologybiology.organism_classificationDivergenceDrosophila virilisGroup (periodic table)Evolutionary biologyGeneticsMicrosatelliteSpecies identificationIdentification (biology)Neighbor joiningHereditas
researchProduct

Studio delle prestazioni di giunzioni incollate ibride

2011

Le giunzioni ibride sono giunzioni in cui coesistono due differenti tipologie di giunzione, di cui una è l’incollaggio. L’articolo mostra i risultati di una campagna sperimentale volta a caratterizzare le prestazioni di giunti incollati ibridi in confronto ad alcune tipologie di giunzioni tradizionali. Si sono prese in considerazioni come tecnologie di giunzione tradizionali la saldatura a resistenza, la rivettatura a strappo, la clinciatura e la rivettatura auto perforante. In particolare si sono studiate le prestazioni di giunti a semplice sovrapposizione per differenti condizioni geometriche del giunto (spessore aderendi, passo tra i punti di fissaggio meccanico) e condizioni ambientali …

Hybrid JoiningAdhesive Bondinglcsh:Mechanical engineering and machinerylcsh:TA630-695lcsh:TJ1-1570lcsh:Structural engineering (General)Design of ExperimentFrattura ed Integrità Strutturale
researchProduct

Generation and characterization of T40/A5754 interfaces with lasers

2014

Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser spot was positioned on the aluminum side to provoke spreading and wetting of the lower titanium sheet, with relatively low scanning speeds (0.1 to 0.6 m/min). Process conditions did not play a very significant role on mechanical strengths, which were shown to reach 250-300 N/mm on a large range of laser power and scanning speeds. In all cases considered, the fracture during tensile testing occurred next to the TiAl3 interface, but in the aluminum fusion zone. In a second st…

Materials scienceMatériaux [Sciences de l'ingénieur][ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]Alloy[ SPI.MAT ] Engineering Sciences [physics]/Materialschemistry.chemical_elementLaserengineering.materialIndustrial and Manufacturing Engineeringlaw.invention[SPI.MAT]Engineering Sciences [physics]/MaterialsShock waveslawAluminiumBrazing[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringLaser power scalingDissimilar joiningComposite materialOptique / photonique [Sciences de l'ingénieur]Tensile testingTitaniumBond strengthMécanique [Sciences de l'ingénieur]Génie des procédés [Sciences de l'ingénieur]Metals and Alloys[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]LaserComputer Science ApplicationschemistryModeling and SimulationaluminumCeramics and Compositesengineering[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicWetting[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicTitanium
researchProduct

Review on mechanical joining by plastic deformation

2022

Mechanical joining technologies are increasingly used in multi-material lightweight constructions and offer opportunities to create versatile joining processes due to their low heat input, robustness to metallurgical incompatibilities and various process variants. They can be categorised into technologies which require an auxiliary joining element, or do not require an auxiliary joining element. A typical example for a mechanical joining process with auxiliary joining element is self-piercing riveting. A wide range of processes exist which are not requiring an auxiliary joining element. This allows both point-shaped (e.g., by clinching) and line-shaped (e.g., friction stir welding) joints t…

Mechanical joiningVersatilityClinchingPin-joiningMechanics of MaterialsMechanical EngineeringSelf-piercing rivetingChemical Engineering (miscellaneous)Joining processesEngineering (miscellaneous)Journal of Advanced Joining Processes
researchProduct